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1. Introduction

Reference [5) formulated a queueing model to address the problem
of determining the optimum number of spares and repair channels for a pop-
ulation of stochastic failing units. The model assumed that a requirement
for a high availability of spares was imposed and approximated the multi-
stage service system with a series queue. Under the same assumptions as
in Reference (5], i.e., exponential failure and service times, this paper
formulates the problem as a cyclic queue for which an exact solution is
tractable. This exact model can be considered as an extension of the

classic machine repair problem with spares, Reference [1].

Section 2 of this paper deals with definitions and notation. The
classic machine repair problem and its logical extension to many repair
stages is first discussed. Then a cyclic queue is defined. Next the ex-
tended machine repair problem is framed as a cyclic queueing system, for
which the literature has applicable results. The section concludes with
the definition of availability.

Section 3 reviews and categorizes three key results from the lit-

erature in the field of networks and cyclic queues. Section 4 formulates
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both the approximate model of [5] and the exact model of this paper.
Section 5 compares the accuracy and computational characteristics of the
two models for gas turbine engine data from [5]. Section 6 presents the

conclusions.

2. Definitions and Notation

1 | Classic Machine Repair Problem

The classic machine repair problem with spares consists of a fixed
number of identical machines of which initially M are operating and vy
are spares, i.e., the fixed total population is Mty . By identical is
meant the machines have the same distributions for failure and service
times, and that there are no priorities or queue disciplines other than

first come, first served.

The M machines are in parallel and are independent. When one
fails in service, it is instantaneously replaced by a spare, if one is
available. If not, less than M machines will operate until a repaired
machine becomes available. Simultaneously, the failed machine goes in-
stantaneously into a repair facility from which, once repaired, it goes
instantaneously into the spare parts pool (or directly into service, if

less than M machines are operating). This process is shown in Figure 1.

The following assumptions are now made:

(a) the system failure rate is proportional to the number of
operating machines,

(b) each machine has exponential failure times with mean 1/} ,

(c) there are c¢ parallel servers (repair channels) in the
repair facility,

(d) each server has exponential service times with mean 1/u .

Letting n equal the number of "down" machines in the repair facility,

the problem becomes a Markovian birth-death process with parameters
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Repair Phase

P e R
OPERATING A SarATe
MACHINES -  FACILITY WITH
(MAX. OF M) C CHANNELS

SPARE PARTS b
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(MAX. OF y)

Figure 1.--Classic machine repair problem,
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MA 3 0<n<y
/\n= (M-nty)d , y < n < My ,
0 , N> My

and

ny , 0:€n<e

el , n>c

The solution for P the probability that there are n machines

in the repair phase, can be found on page 123 of [4].

> L Extension of the Machine Repair
Problem to Many Stages

A logical extension to the classic machine repair problem with
spares is to introduce more than one step into the repair phase. These
additional steps, or stages, could represent the removal of a failed
machine, the transportation to the repair facility, the repair itself,
transportation from the repair facility, etc., until it is returned to the
spare parts pool. Such a model is shown in Figure 2, where each additional

stage consists of a number of parallel servers with exponential service times.

The straightforward application of the Markovian birth-death process
is no longer directly applicable as before. Reference [5] solves this
extended model by imposing a high availability constraint on the spare
parts, then making a simplifying assumption that the operating stage acts
as an infinite source (true Poisson) input process to a series (multi-stage
repair) queue. The model of this paper solves the extended model by treating

it as a cyclic queue, without any requirement for high availability.

2.3 Cyclic Queueing System

Figure 3 represents a cyclic queueing system. There is a total of
N identical customers in the K separate stages of the system. Each stage

consists of ¢y parallel servers, each with exponentially distributed service

times with mean My o i=1,2,...,K . The system is closed, i.e., no

ol
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Figure 2.--Extension of classic machine repair problem.
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customers enter or leave the system. Upon being served, a customer goes
directly to the next stage. 1f a server is free, the customer goes directly
into service. If not, the customer forms or joins a queue, which can never
be blocked (i.e., infinite waiting room betwecen stages). Upon completing
the Kth stage, the customer goes directly to the first stage and starts

the cycle over.

Letting n, , ¢, , and u represent the number of customers,

i i i
parallel servers, and exponential service mean rate, respectively, at the

ith stage, 1i=1,2,...,K , we have the following relationships:

<
e B B
service rate at ith stage =
>
5 TR S
and
K
total number of customers in the K stages of the system = N = z n, .
i=1

2.4 Machine Repair Problem as a Cyclic Queue

The extended machine repair problem with spares will now be framed
as a cyclic queue. Of the K stages of the cyclic queue, the first stage

represents the operating machines. The <y parallel servers at the first

stage can be considered to be the M operating machines of the classic

problem (c1 = M) . Machines that fail in Stage 1 go directly to Stage 2,

a removal phase. There are <, parallel servers there which represent the

number of "machine remqvers' present. After removal, machines go to Stage
3, say a transportation phase, then to Stage 4, etc. At the ith stage

(i=1,2,...,K) , there are ci parallel servers, each with an exponential

service rate u1 . Note that cy can be set to the total population size,

N , in the system (i.e., effectively set to infinity) to represent an ample
server stage, with no possibility of a queue forming in front of that stage.

This might be appropriate for removal and transportation phases.

- J . ' s
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After leaving the Kth stage, the machine returns to Stage 1 ready

for service. 1If less than cl (i.e., M) machines are operating, the newly
")

repaired machine goes right into service. 1If all c, servers are busy

(i.e., all M are "up") the newly repaired machine either starts a queue or
joins an existing one in front of Stage 1. This queue represents the spare

machines on hand (i.e., the inventory).

Table 1 compares the terminology between the machine repair problem

and the cyclic queueing system.

TABLE 1

COMPARATIVE TERMINOLOGY

[ T TR TSR IS T ST T S TS Ll el e = o — e o BB === ===
NOTATION MACHINE REPAIR PROBLEM CYCLIC QUEUE

Number of Operating M ¢
Machines y

Machine Failure Rate A My

Total Number of Machines Mty N

Number of Spares y N - 4

Size of Inventory i . M + y - Number Queue Size
(Spare Parts Pool) in Repair Phase at Stage 1

2.5 Definition of Availability

Suppose there are three spare machines in the inventory, i.e., a
queue of size three in front of Stage 1. 1If an operating machine fails, a
spare is instantaneously pulled from the inventory and put into service.
Therefore, at the time of a failure, a spare is available. Now assume
that the queue has shrunk to one spare. Again, if an operating machine
fails, a spare is available. At this point, the queue size is zero and
no spares are available, but the operating system is unconcerned; the

operating system looks to the inventory only when an overating machine

— -
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fails, and at no other time. By the time another machine fails, a newly
repaired machine might have arrived from the Kth phase, resulting in a
positive queue again. In other words, even though temporarily no spares
were available, the operating system does not know or care about it
unless a failure occurs. As long as M machines are up without interrup-
tion, the availability of spares is not a factor in the operation. There-
fore, the definition of availability involves conditioning on the occurrence
of a failure. More precisely,

AVAILABILITY = probability that the spares inventory

is not empty given that a failure is
about to take place

= probability that the queue size at
Stage 1 is greater than 0 given that
a failure is about to take place.

An algebraic expression for these "failure point probabilities" in

terms of the '"general time probabilities'" can be derived from Bayes' theo-

rem. First, definel

P(nl) = general time probability that there

are nl customers at Stage 1

and

Q(nl) = conditional (or failure point) prob-

ability that there are ny customers

at Stage 1 given that a failure is
about to occur.

By Bayes' theorem:

Q(n,) =
Pr{failure about to occur at Stage 1|n1 customers at Stage 1} P(nl)
N ’
} Pr{fallure about to occur|nl} * Pln))
nl-O (1)

1All probabilities are assumed to be steady-state.

- Gim
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where N {s the maximum number of customers in the system. We will

return to Equation (1) in the development of the specific models.
With Q(n]) so defined, we can now define availability as:

N
AVATLABILITY = ) Q(n,)

n1=cl+1

It remains now to find the P(nl) using the theory of cyclic queues.

3. Literature Review on Cyclic Queues and Networks

In the course of research for this paper more than 40 references
on the subject of cyclic queues and networks were reviewed and categorized.
Networks were included because cyclic queues can be considered as a subset
of networks. Only the three most relevant references to this paper's
application are discussed here. The others, dealing with variations such

as travel time between stages (see [9]), are not included.

Table 2 shows the key features of the models presented in the three
pertinent references. All of the models are multi-stage, all stages have
only exponential service, there is no travel time between stages, and all
customers are identical (i.e., single class of customer). The no travel
time restriction is not crucial since travel time between stages can be
handled by simply introducing an ample server transportation stage between

any two stages .in the cyclic queue.

3.1 J. R. Jackson, Reference [6]

In his 1957 paper, Jackson proved a theorem for networks in a
steady-state condition. The theorem yields the steady-state joint probability
for the nunbef of customers at each stage. The network has multiple stages.
Each stage has parallel channels, with all servers at a given stage having
the same exponential service time distribution. Each stage can also have
external Poisson input to it and can output from the system. Customers

could go from one stage to any other stage in the network (feedback/feedforward)

- 10 -
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according to some known probability distribution. 1In 1963 [7], Jackson

extended his theorem to allow state-dependent service at any stage.

Before describing the Jackson results, we will first consider a
single M/M/c queue, with input Poisson stream parameter ) and exponential

service parameter U . From the well-known results for A the steady-

state probability that there are n customers in the system (service plus

queue), given the parameters A , u , and c¢ , are:

A\ 1
E ;T p0 3 n<e
pn(k.u,c) = (A)“ i (3)
=) il s L Ve M (G -
u c! cn it

(for %ﬁ <1)

Jackson considers a network such as the one in Figure 4, where a

customer's path through the network is influenced by , the probability

_ Py
that a customer leaving the jth stage goes to stage i (j=1,2,...,K ,

K
i=0,1,...,K) ; 1i=0 represents leaving the system and z pji =« 1 for
i=0

all j . He defines “i as the Poisson parameter of the external input to

stage i, and Fi to be the total mean input rate to stage i. Therefore,

P oo, * ) (4)

r
Lo i
Essentially, Jackson's theorem states that the steady-state joint probability

of n, customers at Stage 1, n,

determined by first assuming that each stzage is an independent M/M/c queue

at Stage 2, ..., n at Stage K, can be

K

with input parameter Fi and service parameter rate u1 , then using

Equation (3) at each stage, and then multiplying the results to obtain the

joint probability distribution. This can be written as (for Fi < “1°i ’

for all 1i=1,...,K)

- 32 -
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5055 %k i R)

P (I‘i.u1 {

nl,nz.....nk

- pnl(rl'ul'cl)pnz(FZ’HZ'CZ)' o -PnK(IK,uKOCK) ’ (5)

where Py (Fi.ui,c ) 1is determined from Equation (3) with the parameters

i i

substituted accordingly.

Note that Jackson's theorem does not assert independence of the
stages, just that if independence is assumed, the resulting joint probability
is correct. 1In his proof, he first sets up the steady-state difference
equations, then postulates the solution, and finally shows that the solu-

tion satisfies the equationms.

3.2 E. Koenigsberg, Reference (8]

In his 1958 paper, Koenigsberg looked at a cyclic queue with multiple
stages, but with only a single server at each stage. The service times were
exponential. Since it was a cyclic queue and not a network, there was no
exogenous input or output and no feedback or feedforward, except directly
to the next stage.

L 4
The method of Koenigsberg was to set up the differential difference

N+K-1
K-1

in the same number of unknowns (which is the number of ways to put N in-

equations for all possible states. The resulting set of ( ) equations

distinguishable items into K boxes, any number to a box), was intractable
for a general solution. Koenigsberg then postulated the solution, which
satisfied the set of simultaneous state equations when substituted back in.
Were it not for the limitation to a single server at each state, we could
have used Koenigsberg's results directly for the development of an exact

model for the extended machine repair problem.

3.3 R. Swersey, Reference [10]

Swersey noted in his 1967 paper that cyclic queues are subsets of
networks and he applied Jackson's network results of [6] and [7] to a

'Lk -
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Koenigsberg type of cyclic queue. This amounts to setting a, to zero

i i
for all i and pji to one for j=i-1 and to zero otherwise in Equation
(4). Therefore, Fi = ri—l for all 1 , i=1,2,...,K (with the understand-
ing that FO = FK ). Thus, [ 1is a constant (to be determined) throughout

the system. This means that in steady state, the input rate to any stage
is a constant, and if the cyclic queue is cut at any point between any two

stages, the same constant flow rate of customers, [ , would be observed.

Under the restrictions that the sum of customers is constant (N)
and that the joint probability must integrate to unity, the Jackson theorem,
as applied by Swersey, can be used to solve for steady-state probabilities

for cyclic queues.

4. Formulation of the Exact and Approximate Models

4.1 The Exact Model

By the Jackson theorem, Equation (5) gives the steady-state joint
probability where Equation (3) yields the individual factors in the ex-

pression.

Applying the Swersey analysis (i.e., ' a constant) yields

- n n n
.(L)ll_.(r_)zl_. .(_I‘__)"l [ R
BysBgscecsfly \By/J By \Wp/ b W/ % 9 0,

1
r 1

oy n p he S e W
by =1 oi]{i =1 bi}

where Pn : g is the steady-state joint probability that there are n
1°0 o

customers at Stage i, for i going from 1 to K. For i=1,2,...,K :

=
=
A
(2]

i 2 =1
b, = n,-c
i i1
cil h ioony > ¢y
- 15 =
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« n, = number of customers at Stage i ( z n, = N )

i=1

¢, = number of parallel servers at Stage i

H; = mean service rate of each server at Stage i

service rate u1 -

Since the first factor does not depend on n, o it can be found

= steady-state probability that there are zero customers
i at the ith stage when the ith stage is treated as an
independent H/M/c1 queue with Poisson input T and

by the summation to unity criterion. Denoting it by A1 , We can write

K H 1
1 1
Pa.,n T A1 m |
i L et 1=1 \Mi i

where Al » then, is given by

and

; K
: 8, = {ni. L R ST 48 121 n, - N} .

1

the constant of integration.

N—nl into K-1 stages, i.e., over the set 82 , where

- if =

AT

over all possible partitions of the N customers into the

(6)

(7)

(8)

In the above '"constant of integration,"” A, , the summation is taken

Note that the joint probability in Equation (6) no longer involves the un-

known steady-state system flow [ , since it has been incorporated into

To determine the marginal probability for the number of customers

at Stage 1, n1 » we must sum the joint probability over all partitions of

‘ o4 e e " - e — ——
g g s o e e e— ~
A ' N ......................-..-....--J
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K
g, = {ni, 402 3 ... B ¢ Z n, = N-n} . (9)

Letting PF(nl) represent the steady-state "exact" (since we will

be comparing this exact model to an approximate model mentioned later)

marginal probability that there are n, customers at Stage 1,

K M 1
Py =a § {n (2 1. (10)
y s, [i=2 \M1

2

To determine the availability of spares, we must first determine

the failure point probability, Equation (1). (Note that PE(nl) , Equa-

tion (10), is a general time probability.) Since we have an exponential

service discipline,

Pr{failure about to occur at Stage lln1 customers at Stage 1}

nlulAt + o(At) ; n, <¢

clulAt + o(At) ; n, > ¢

Equation (1) can now be written (with subscript E added to denote this

exact model) after dividing numerator and denominator by At and taking

lim , as
At»0
Aoy Pelng) 5 8y Zey
QE(nl) = ’ (11)
Ascqyy Pping) 5 'my > ¢
where
-1 cl
‘ Ay = 1 mpuy Pylny)
! n,=0
1
(12)
N
+ -z i clul PE(nl) .
W
= 1Y

e ——— — — ———
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Equation (2), the expression for the availability, now becomes

(again with the subscript E added)

N N
= Y = Y )
AVAIL,, ) Qp(n)) = Ajcu, _) Pe(n) . (13)
nl=c1+1 n]-c]+l

Equation (13) is the availability of the system. It requires Equa-
tions (12), (10), and (7) to compute, but the availability can be expressed

totally in terms of the system parameters “L’ci (I=1. ...,,E) , N, and K .
Note that the constant A3 , in Equation (12), requires the evalua-
tion of PE(nl) for all n1 from 0 to N, the maximum in the system. This

is a key point in discussing the computational efficiency of the exact and

approximate models.

4.2 The Approximate Model

Consider an M/M/c queue with input parameter ) and service rate
U . The steady-state probability that there are n in the system is given
by Equation (3). Burke, in his 1956 paper [2], proved that the output from
that queue was Poisson with parameter ) . Thus, the output is independent
of the service rate mean, | , as long as the service time is exponentially
distributed. Burke also reasoned in his 1972 paper [3], that since A in
results in ) out, then a series of M/M/c queues could be formed with X
in at one end and ) out at the other, as indicated in Figure 5. Each
stage is independent of the other stages and the steady-state joint probabil-
ity could be found by multiplying the probability from Equation (3) for each

stage.

The crux of the approximate model is the assumption that the first
stage, the operating machine stage, is almost always operating at full ca-

pacity, i.e., all €y machines are up. (This is the implication of a high

availability constraint.) Then the output from the first stage is a pure

Poisson process with parameter clul and the first stage acts like an
infinite source input to the rest of the system.

- 18 -
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Figure 5.--Burke series queue.
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Stages 2 through K can now be treated as the Burke series of Figure

5, and the joint probability that there are n in Stage 2, n

2 3 in Stage
5 SRR nK in Stage K is
n n
2 K
. S (c1u1> l_ 5 <°1“1) i : £8)
BysPgrssnsly X ¥y by 9 xS 5%
where for i=2,...,K
1
ni. 3 ni < c1
bi 3 c,! cni-ci > :
gy S S

c.H, < e for i=2,...,K and »p = probability there are zero cus-
J A § » k. | 01

tomers at the ith stage.

After summing over all possible n, to get the "constant of inte-

' i
‘ gration,"
!
! n
i i
- K C,H
i 2 g | 1
‘ P il ( ) S (15)
nz,n3,...,nK 2 1=2 ui bi
where
n n
i c,~1 i
e TR e g S T S LU
A2 ifay 5 . Z [ n, !
=2 n=0 \ "1 1 =2 (n=0\ ¥4 e
(16)
(o
i
okl <°1”1)< €1¥y
et \ Wy %t i o
K
At this point there is no restriction on ) n, because with an
i=2
infinite source at Stage 1, any system size is possible. However, in the
K
real environment, there is a constraint, namely Z n, = N—ni , where N
i=2
20 -
e ————— Nl B g ep———
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is the total population in the system and n is the number at Stage 1, the

“infinite source." Therefore, the probability that there are n, at Stage

1 is set equal to the probability that N—n1 are in the rest of the system,

i.e., the sum of the probabilities of all the possible ways N-—n1 customers

can be partitioned into K-1 stages.
Letting PA(nl) be the approximate model's steady-state probability

i that there are n1 at Stage 1, we have

5

K (o I

) . 171 1

P,(n) =A, ) n( )-—, (17)
A1 2 B, a2\ W by
where
K
s, = {ni, , o o R 122 n, = N—nl},

\ A2 is given by Equation (16), and Equation (15) has already been sub-

stituted for the joint probability function.

It is well known that for M/M/c queues,

QA(nl) - PA(nl) . (18)

By the definition of availability, Equation (2), we can now write (with
the subscript A added to denote the approximate model)

N
AVAIL, = } Q)

A
n1 c1+1

e S R (19)
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Equation (19) is the availability of the system. It requires Equations
(17) and (16) to compute, but the availability can be expressed totally

in terms of the system parameters ui - ci (1%);.::,K) « N, and K .

Note that Equation (19) requires only the evaluation of PA(nl)
for n, > c1 . This is a key point in discussing the computational effi-

ciency of the exact and approximate models.

z 4.3 Summary of Algebra and Some Inequalities

Exact model: The exact, marginal, general time probability that

there are n, customers at the first stage is

: g o P
e (ul)il
P.(n ) = A It—=} =1}, (10)
il g f{1=a\¥/ Py
2
2 where
i ni
{ ¥ K fu
‘: All'z n('u_l) %— : ol
s, (i=1 ‘"1 i
1
K
§ S, = {n;, 1=2,...,K : ] n, = Nn ]},
; 1=2
K
s, = {n,, 1=1,2,... K ) n, =N,
i=1
nit . 0
bi g c,! cni_ci T T
-3 : S

The exact, failure point probability that there are n customers at

the first stage given that a failure is about to occur is
e T b T b L R T
Qp(n,)) = , (11)

Ay cy¥y Bp(ny) 3 n, > ey

TREL ) e
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where
1 g N
1 A-l - z n,u, P .(n) + y e.u Pila.) . (12)
] 3 s j g S e | i 451 T
nl—O nl-cl+1

The probability that there are spares available given that a failure is

about to occur is

N N
o PSR T TV e % % (13)

= = +
n1 c1+1 n1 ¢ 1

AR TR

Approximate model: The approximate, marginal, general time probabil-

itv that there are n, customers at the first stage is

1
i
K- fe i
11 1
P,(n) =4 } n( )—, (17)
A 25, [1=2\ ¥4 B
2
where
n
i
K © (-85
A= Z(ll>;1,—, (16)
1=2 | n =0 My i

and 52 5 b1 as above in the exact model.

The approximate failure point probability that there are n1 cus-

tomers at the first stage given that a failure is about o occur is
QA(nl) -~ PA(nl) . (18)

The probability that there are spares available given that a failure is

about to occur is

N
MAIL. » - F P () . (19)

A A
n1 c1+1

Inequalities: With the above algebra summarized, it can be shown

(see Appendix) that for n, > o

- 23 =
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QE(nl) > PE(nl) > QA(nl)
Therefore,
N N N
n -—'cz: +1 Ul 2 & ,g - Pp(n)) 2 7 22: o Q,(n))
N 11 My
or
AVAIL, > AVAIL,. > AVAIL, , (20)
where
& N
| Wy =L Ege,) (21)
‘ n1=c1+1

and where the subscript GE represents an availability determined by using
the general time probability (versus a failure point probability) from the

exact model.

Inequality (20) is a key result. It shows that for a given set of

system parameters (N, o ui, i=1,...,K) , the true (exact) availability

of the system is greater than that predicted by the approximate model or by
using the general time probability (versus the failure point) of the exact

model.

In other words, the approximate and GE availabilities are conserva-
tive, i.e., if one uses the approximate or GE approach to determine system
parameters to yield a certain availability, then the true system avail-

ability will actually be greater than the original target.

4.4 Relationship Between the Two Models

The exact model development involves the concept of a fixed flow
rate I throughout the cycle. Consider the flow coming out of the first
stage. If there is only one customer in service, the output rate from the

stage is equal to the service rate, u1 » for one channel. If two are in
service, the output rate is Zu1 . The output rate increases linearly

with the number of customers in service, up to the maximum service rate of

- O
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c These different output rates, weighted by the probability of each

4

rate, are what make up [ .

In the exact modet,

“1 N
[ = P + .
nz-o nHy Pglny) " .Z o e Pe(n) »
1 e
or, after some algebra,
“1
Peem - ] (c)=nIPL(n)) (22)

nl'O

The second term is negligible under a high availability constraint

(i.e., there is probably a queue at Stage 1, which implies n, is probably

greater than c1 , which implies PE(nl) small for n, < < ). Therefore,

under a high availability constraint,

F=ze (23)

e B
which is a pure Poisson output with parameter clul . This is what the
approximate model uses as output from its first stage ("infinite source")

and input to its second stage.

In summary, the exact model uses I from Equation (22) and the

approximate model uses [ from Equation (23).

5. Computations

5.1 Data

The following data were obtained from [5]. The application was to
a fleet of gas turbine engine ships, where the decision variables were the
number of spare engine parts to supply and the number of repair channels
to provide in order to minimize costs and to satisfy a high (.90) avail-

ability constraint. Each engine had two components, a gas generator and a

- 28 w
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power turbine, requiring separate repair facilities; however, only one

component will be analyzed here. There are four stages: operating,

removal, transportation, and repair. Two cases are examined, one where it
is desired to have 10 operating engines, and the other where it is desired
to have 28 operating engines. The removal and transportation stages have
ample servers, i.e., no queues ever form in front of Stages 2 and 3. The
‘ parameters for the gas generator component (the more critical of the two)

are given below:

; W, = failure rate = .00147186 failures/day
Hy = removal rate = .5 removals/day
My = transportation rate = .1 transports/day

My = repair rate .01887 repairs/day

or, in terms of the inverses,
llu1 = 679.4 days between failures

l/u2 = 2 days to remove a machine

1/u3 10 days to transport a machine

llua 53 days to repair a machine

: 'cl = 10 ; 28 = number of operating machines
€y = cy = "o'" = ample servers for removal and
transportation.

Decision variables:

€ * number of repair channels at the repair facility
N = total number of customers in the system = number
of spares + <

B

Reference [5] defined an objective function using cost data to arrive
at optimal values for the decision variables (number of spares, number of
repair channels). 1In this paper no objective function will be formed.

Only the effect of varying the decision variables on the availability for
the exact and approximate models will be analyzed for the purpose of de-

termining the accuracy of the approximate model.

- 9B w
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52 Discussion of Results

Figure 6 shows tiie results for the case with 10 operating engines

(c1 = 10) . The abscissa is the number of repair channels, €4 0 at the

fourth stage (Stages 2 and 3 have ample, or infinite, servers), and the

ordinate is the availability of spares.

The curves plotted represent the availability as a function of A

for a fixed number of spares. The availability is computed three ways:
by the exact model, AVAILF, Equation (13); by the approximate model, AVAILA,
Equation (19); and bv the general time probability of the exact model,

AVAIL Equation (21). Note how the computed availabilities are consistent

GE’
with Inequality (20), which shows the GE and approximate models to be

conservative.

Just to the right of the model designation (AVAILE, etc.) is the

computer time and percentage error. The time is the average number of
"system seconds" (a combination of compilation, execution, input/output,
etc.) of computer time used in the calculation of any given point on that
curve. The percentage error is relative to the exact model and is computed
after the apparent asymptote has been reached. Percentage errors are also

shown at two other points on each curve, before the asymptote is reached.

For example, for the one spare case, the approximate model took
about 3.1 system seconds to compute each point on the curve (which is com~
posed of about five points), and the error was about 4% for points with
more than three servers. This error increased to 6% for two servers, and
to 36% for one server. Note that the number of servers is with respect to

the fourth stage of this cyclic queueing system.

The results indicate that the availabilities quickly approach hori-
zontal asymptotes as the number of servers increases. 1In addition, the
asymptotes for E, GE and A more quickly approach each other as the number
of spares increases, i.e., the percentage error from not using the exact

model decreases,
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| Figure 6.--10 operating machines (M = < = 10).
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A key observation is that if the availability were constrained to
be "high," say .9, then the objective function for a particular application
would only be evaluated over a region where the number of servers is greater
than two and the number of spares is greater than three. In this region,
the approximate and exact models, as well as the exact general time probabil-
ity approach, yield almost the same results.

In Figure 7 we have similar trends for the case where ¢ = 28 (1.e.,
28 machines are to be operating). Here an availability constraint of .9
would force the objective function to a range in which there are at least
four servers and six spares. Again, the approximate model and the exact
general time approach yield very good results with respect to the exact model.
However, note how the computer times vary. The approximate model takes

only about one-sixth of the time for almost the same accuracy.

This time difference can be explained by looking at the algebraic
summary, Section 4.3. It takes more time to compute the constant of inte-

gration, Al , Equation (7), for the exact model (versus A2 , Equation

(16), of the approximate model), but this is but a small part of the dif-
ference. Equation (13) for the exact model requires the computation of

a constant A Equation (12), which involves PE(nl) for all n from

3t 1
0 to N, the maximum in the system. On the other hand, the approximate

model only involves PA(nl) for 0, from c1+1 to N in Equation (19).

Considering that for each value of n both the exact and the approximate

1

models must go through the partitioning of N;nl customers into K-1 sub-

sets (i.e., the set S in Equations (10) and (17)), the approximate model

2
becomes increasingly easier than the exact model to evaluate as N increases

(where N = c1 + number of spares). Thus, for cl-IO (and N ranging from

11 to 15) the time differences were relatively great, but in magnitude not
startling; whereas for c1-28 (and N ranging from 30 to 34), the computa-

tion time differences were significant, both relatively and absolutely.

- 20 =




— ¥ ——
——————— .. A e e e
T-346
1.0 p IAVAIL ; 248;
) spares E
lAVAILGE; S23
9% AVAIL, ; 44;
87 /AVAILE 3 192;
14 AVAILGE; 31;
> AVAILA; 26;
: .6¢b
i
-]
©
~
_ 3 .5¢
2
AP
AVAIL_ ; 143;
3% 1(2)2 2 spares , Ez/ ’
T z#‘)\VAILGE; 17;
02 / N
2% . S Lia
14% { - NAVAIL, 123
3%
0%
A¥ 162 ( 182
s A A 2 A A A _— . A A
Ad A v LB v v L J v L d v v
1 2 3 4 5 6 7 8 9 10 11
Number of Servers at Stage 4
Figure 7.--28 operating machines (M = ¢ = 28),
i
4t - 30 -




’1

AR R P

o . (o et et

T-346

When comparing the approximate model with the general time prob-
ability of the exact model in Equation (21) (the GE model), the approximate
model is faster than the GE model due to the time involved in computing the

constants A2 and Al , Equations (16) and (7), respectively. However, this

general time probability from the exact model approach still yields substan-

tial time savings over the exact model because the constant A Equation

3 ’
(12), is not involved in the GE model.

Some observations on the asymptotic behavior of availability are
worth noting. Figures 6 and 7 clearly indicate that availability can be
increased only to a certain value as the number of servers at Stage 4 is
increased (for a constant number of spares). Obviously, when the number
of servers exceeds the total population in the system, the availability
can no longer be affected. But the asymptote is reached long before the

number of servers becomes "ample" at Stage 4.

There appears to be a similar asymptote for availability given a

fixed number of servers and an increasing number of spares (i.e., a vertical

cut in Figures 6 and 7 to derive a cross plot). If contours of constant

availability in server-spare space are plotted, a picture such as Figure 8

results.

One final note on Figure 7: for less than three servers at Stage 4,

the approximate model cannot be used because the condition clu1 L for

i
i=2,...,K 1s not satisfied. Thus, the approximate model has a limit on its
applicability. However, the approximate model was formulated with a high

availability constraint at Stage 1 in mind. For ¢ > c

1ul a”a there is
great congestion at Stage 4 rather than at Stage 1, and the high availability
constraint at Stage 1 is not satisfied.

6. Conclusions

This paper has formulated and compares an exact and approximate

model to handle an extended machine repair with spares problem. Under a
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"high" availability constraint, the approximate model was shown to be compu-
tationally more efficient and almost exact in its results. Furthermore,
the approximate model was shown to be conservative, i.e., it always under-

estimated the true availability of the system.

A third approach to computing availability was investigated. This
involved using the general time probabilities from the exact model (versus
the exact failure point probabilities). The results were between the exact

and approximate models in computation time and precision.

The main conclusion, then, is to use the approximate model if a
"high" availability constraint is present, and the exact model otherwise.
Ir fact, one may be forced to use the exact model for situations where

is not strictly less than c for 1i=2,...,K (which violates the

1t ¥
basic assumption of an M/M/c¢ queue). In those low availability cases where

N is "large," the general time (versus failure point) probabilities for the

exact model can be used to save computer time.
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APPENDIX A

Proof That Qg(n,) > Po(n)) 2 Q,(n,) for o, > <

This appendix proves algebraically that the failure point prob-
ability in the exact model is greater than or equal to the general time
probability in the exact model, which is greater than or equal to the failure

point probability in the approximate model, for n customers at Stage 1,

1

when n is greater than s the number of servers at Stage 1.

Since QA(nl) = PA(nl) (i.e., the approximate model failure point
and general time probabilities are equal), then we want to show

QE("I) > PE(nl) > PA(nl) - for 0, > € (A1)

where, repeating relationships and notation here for convenience,
QE(nl) = failure point probability in the

exact model that there are exactly

nl customers at Stage 1

= Aaclu1 PE(nl) $ ny > ¢y o+ (11)

PE(nl) = general time probability in the exact
model that there are exactly n,

customers at Stage 1

K su
1 1
= Alz 1l (I‘:) i (10)
2

PA(n]) = general time probability in the ap-
proximate model that there are exactly
ny customers at Stage 1

-3 -




T-346
n
i
d K c, U
, =a, ) §n ( 1 1) = (17)
: S i=2 ui i
2
n
i
K U
All - z m (_.1.) %_ (7
s, {i=1 My {
n
1
- K o C, M
Pl g ( 1 1) L (16)
i=2 [n,=0 \ M4 i
1
Cl N
el Lo Gy I oemw ) (12)
3 ;s Tt A R W e |
nl=0 nl=cl+1

| c = number of parallel servers at Stage i,
i
’ fut 2.,k

H = gervice rate of each server at Stage i,
isl 2. oK

n = number of customers at Stage i, i=1,2,...,K
K = total number of stages

N = total number of customers in the K stages =

T RO o ctcroiomn s

j
3
n
guy 2
<
nil b By X8
b1 = 2 C"i-ci e : (A2)
i i : i i

K
5, = {n; 1=2,3,...,K: ) n, = Nn,} (9)
=2
!
8 K
N S1 = {ni; 1=1,2,...,K : X n, - N} . (8)

i=1

With the notation established, consider first the inequality
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)

> .
Qg(ny) 2 Pp(ny) 3 ny >,

A Substituting (11) and (12),

L] PE(nl) :
g e e 3 )
1 N
Lompiy P+ 1 e pm)
n_ =0 n.=c. +1
1 ¢ S|
; Under the reasonable assumption that PF(nl) ¥ 0 for n]=0,1,...,N , the
! above reduces to
- N
(‘.1 > I nIPE(nl) + z CIPE(nl) ,
n1=0 nl'c1+1

N
Since X PE(nl) =1, ¢, can be written as
=0

¢ 1
1
{ °1 N T & N
4 = >
i cl nzgo clPE(nl) + ¢ ’g . clPE(nl) > Zao anE(nl) + 4 =§ . CIPE(nl) >
1 y St | | : M
which reduces to
‘ 1 R
L oeltn) > J nPeng)
n1'0 n1=0

which is true since ny in the right-hand summation is élways less than or

equal to ¢ Therefore,

1

Qg(ry) 2 Pp(n)) 5 np > ¢

Now it remains to prove the second part of Inequality (Al):

PE(nl) > PA(rl) NG B T TR

5%
Substituting (10) and (17),
- 37 =
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n n

i 1
K V] ? K c.u
AL (i) FEra b (lx"]) -
s. [i=1\ "1 1 s, [1=2 \ Y4 1

2

In order to get some cancellations, we change the index in the product term
on the left-hand side and remove ° from the product term (noting that

K
) n, = N—n1 ) on the right-hand side.

=2
n . i
4 8, i=2 \ My b,

o
~
?
=

1
K u ? K

AL (e (1) =t2alle b
s, "1 i=2 \Mi i S -

On the left-hand side, using (A2),

H.~C

1

L L ; 1 1

1

Under S2 from (9), n, is a constant, and we can move terms outside

the summations to get

i i i
Ay 25“11;AN'“1ZK“11
@ —c ) T e B | ] LI
11 {s, 1=2\"1 i s. i=2 \"4 i
c,! e - :
1
or
A 2
1 D
N—c1 e
c1! c1

1 P > 1 ety »
1 e i
N—-c1 K ul 1 K . clu1 1
gre tPpRl) Hf owi () L
s, [i1=1 \¥1 1 1=2 [n =0 \ Y1 1
2 i
e Sy "k
Noting c1 = c] . ¢y ® ek ¥ c1 s and by changing the index on the product

term on the left-hand side, and by inverting both sides and changing the
direction of the inequality,
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n n n
1 i i
I (B) AR ()l
B L. ARl N sl WS B
1 c. b i
1 135
Let
n
1,
c,! ¢
Fios lc 1
1
¢ e
; n,-¢,
Since we are considering only n, > € s then by (A2), b1 = cl! < and
n
e .1 e b
1 1
e n-c.\ 1.
c (c ! e 1 1)
) e |
Now letting
n
i
f -(f.]ij_];) l_.
’
i ui b1
we can write
K & - K o
Zrnf1=2nfi§n i 3.
S1 1=2 S1 i=2 i=2 ni=0
1t now only remains to show

1 K

K [
) ' n fi} LA ) fi: '
S1 1=2 i=2 niﬁO

Under S1 , the sum of ni over all i is restricted to N . Since

n

1" ? 1
the f, factor, +— , 1s always positive, then
A W/ by
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K N N N K
Z{Hfixf_ ) RN | ﬂfi}.

Sl i=2 nK'O nK_1=0 nz-O i=2

which simply bounds the summation over the restricted set S1 to more

manageable summations to N . Therefore, the final step is to show

N N N K ? K o
RO s A f o S H fi}.
nK=O n3=0 nz-O w2 = i=2 ni=0

Substituting the value of f1 » the inequality to prove now is

n n n

2 3 K
'; g (°1“1) ¥ (°1“1) g (cl“l) 1
ned nmo\V2 S DPa\Uy ] By Wg /b
K 2
n n n
2 3 K
" o0 ~
; v (5% 2308 ¢ (5 1 S5t 1
SAEVe ) i il L) &
n2=0 2 2 n3=0 3 3 nK=0 K K
It is clear that the product of infinite sums on the right-hond side will

WP
ENEPp——— S

generate all the terms generated by the finite sums of the products on the
left-hand side plus an infinite number more of miscellanecus ross products.

Since all terms are positive, the inequality is satisficd, 1 . refore,

, e L T CIJ

This completes the proof,

Qg(ny) 2 Po(n)) > P (n)) 5 n > o s B (A1)
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